70 research outputs found

    On effectiveness of lossless compression in transferring mHealth data files

    Full text link
    Abstract—The health and fitness data traffic originating on mobile devices has been continually increasing, with an exponen-tial increase in the number of personal wearable devices and mobile health monitoring applications. Lossless data compression can increase throughput, reduce latency, and achieve energy-efficient communication between personal devices and the cloud. This paper experimentally explores the effectiveness of common compression utilities on mobile devices when uploading and downloading a representative mHealth data set. Based on the results of our study, we develop recommendations for effective data transfers that can assist mHealth application developers. Keywords—mobile sensing; health monitoring; wearable devic-es; data communication. I

    Smart Button: A wearable system for assessing mobility in elderly

    Full text link
    Abstract—Continuous advances in sensors, semiconductors, wireless networks, mobile and cloud computing enable the development of integrated wearable computing systems for continuous health monitoring. These systems can be used as a part of diagnostic procedures, in the optimal maintenance of chronic conditions, in the monitoring of adherence to treatment guidelines, and for supervised recovery. In this paper, we describe a wearable system called Smart Button designed to assess mobility of elderly. The Smart Button is easily mounted on the chest of an individual and currently quantifies the Timed-Up-and-Go and 30-Second Chair Stand tests. These two tests are routinely used to assess mobility, balance, strength of the lower extremities, and fall risk of elderly and people with Parkinson’s disease. The paper describes the design of the Smart Button, parameters used to quantify the tests, signal processing used to extract the parameters, and integration of the Smart Button into a broader mHealth system. Keywords—mobile sensing; health monitoring; wearable devices; timed-up-and-go test; 30-second chair stand test. I

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels

    Ciliopathies: an expanding disease spectrum

    Get PDF
    Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing “outside-in” signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features

    Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks

    Get PDF
    The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed

    Algorithms and Hardware Structures for Unobtrusive Real-Time Compression of Instruction and Data Address Traces

    No full text
    Abstract. Instruction and data address traces are widely used by computer designers for quantitative evaluations of new architectures and workload characterization, as well as by software developers for program optimization, performance tuning, and debugging. Such traces are typically very large and need to be compressed to reduce the storage, processing, and communication bandwidth requirements. However, preexisting general-purpose and trace-specific compression algorithms are designed for software implementation and are not suitable for runtime compression. Compressing program execution traces at runtime in hardware can deliver insights into the behavior of the system under test without any negative interference with normal program execution. Traditional debugging tools, on the other hand, have to stop the program frequently to examine the state of the processor. Moreover, software developers often do not have access to the entire history of computation that led to an erroneous state. In addition, stepping through a program is a tedious task and may interact with other system components in such a way that the original errors disappear, thus preventing any useful insight. The need for unobtrusive tracing is further underscored by the development o

    An Efficient Runtime Instruction Block

    No full text
    Abstract—Embedded system designers face a unique set of challenges in making their systems more secure, as these systems often have stringent resource constraints or must operate in harsh or physically insecure environments. One of the security issues that have recently drawn attention is software integrity, which ensures that the programs in the system have not been changed either by an accident or an attack. In this paper we propose an efficient hardware mechanism for runtime verification of software integrity using encrypted instruction block signatures. We introduce several variations of the basic mechanism, and give details of three techniques that are most suitable for embedded systems. Performance evaluation using selected MiBench, Mediabench, and Basicrypt benchmarks indicates that the considered techniques impose a relatively small performance overhead. The best overall technique has performance overhead in the range 0-8%, when protecting 128byte instruction blocks with 16-byte signatures. With 64-byte instruction blocks, the overhead is in the range 0-15%; the average overhead with 8 KB cache is 1%. With additional investment in a signature cache, this overhead can be almost completely eliminated. Index Terms—Computer architecture, embedded systems, secure computing, processor design, performance evaluation, security attacks, decryption
    corecore